Search results for "Ligand-binding Protein"

showing 1 items of 1 documents

Conformational response to ligand binding in phosphomannomutase2: insights into inborn glycosylation disorder.

2014

Background: Mutations in phosphomannomutase2 cause glycosylation disorder, a disease without a cure that will largely benefit from accurate ligand-bound models. Results: We obtained two models of phospomannomutase2 bound to glucose 1,6-bisphosphate and validated them with limited proteolysis. Conclusion: Ligand binding induces a large conformational transition in PMM2. Significance: We produce and validate closed-form models of PMM2 that represent a starting point for rational drug discovery.

Models MolecularPELEGlycosylationProtein Conformation1Molecular Sequence DataGlucose-6-PhosphateGlycosylation Inhibitor6-bisphosphate; PELE; computer modeling; drug discovery; glycosylation; glycosylation inhibitor; ligand-binding protein; phosphomannomutaseLigandsDrug DiscoveryAnimalsHumansAmino Acid Sequence16-BisphosphateProtein UnfoldingTemperatureLigand-binding Proteinphosphomannomutase 2 and mass spectrometryPhosphotransferases (Phosphomutases)PhosphomannomutaseMutationProteolysisMetabolism Inborn ErrorsMolecular BiophysicsPeptide HydrolasesProtein BindingComputer ModelingThe Journal of biological chemistry
researchProduct